硅太陽能電池的一般做成P+/N型構造或N+/P型構造,P+和N+,表明太陽能電池正是陽光照射層半導體器件的導電性種類;N和P,表明太陽能電池反面襯底半導體器件的導電性種類。太陽能電池的電氣性能與生產制造充電電池常用半導體器件的特點相關。太陽能電池的技術參數由開路電壓、短路容量、較大 功率、填充因子、變換率等構成。這種主要參數是考量太陽能電池特性優劣的標示。







、太陽能發電系統
太陽能發電系統主要由太陽能光伏陣列、通用變頻器、 光伏控制器組成。
1、太陽能光伏陣列。太陽能光伏陣列由許多太陽能電池串并聯構成,直接把太陽能轉換為直流電 。目前,太陽能電池大都為硅太陽能電池,包括單晶硅、多晶硅及非晶硅太陽能電池。太陽能電池的伏安特性曲線具有強烈的非線性,其較大輸出功率就是其額定功率。
2、通用變頻器。太陽能光伏陣列的輸出伏安特性曲線具有強烈的非線性,而且和太陽能輻射強度、環境、溫度、陰雨、霧等氣象條件有密切關系 ,工作點會隨之偏離。要使光伏水泵系統工作在理想工況,而且對任何日照,都要發揮在當前日照下光伏陣列輸出功率的較大潛力,需要對電池的較大功率點進行跟蹤和調節,通過變頻器變頻變壓改變發電系統的輸出功率,使電源和負載之間達到和諧、、穩定的工作狀態。通用變頻器將太陽能光伏陣列輸出的直流電轉換為交流電,為水泵機組提供動力。
3、光伏控制器。光伏控制器具備遠傳數據通訊接口,可適配多種的通用變頻器。通過設定工作點電壓控制方式、通訊協議等參數,建立與通用變頻器的可靠通訊,實現其手動/自動啟停。


能量轉換環節少。
從能量轉換環節來看,太陽能光伏發電是直接將太陽輻射能轉換為電能,在所有可再生能源利用中,太陽能光伏發電的轉換環節少、利用直接。一般來說,在整個生態環境的能量流動中,隨著轉換環節的增加、轉換鏈條的拉長,能量的損失將呈幾何級增加,并同時大大增加整個系統的建設、運行成本和不穩定性。目前,晶體硅太陽能電池的光電轉換效率實用水平為15%-20%,實驗室高水平已達35%。

經濟、環保。
從資源條件尤其是土地占用來看,生物能、風能是較為苛刻的,而太陽能利用則很靈活。如果說太陽能光伏發電占用土地面積為1,風力則是太陽能的8-10倍,生物能則達到100倍。就水電而言,一個大型水壩的建成往往需要淹沒數十平方公里到上百平方公里的土地。相比而言,太陽能發電不需要占用更多的土地,屋頂、墻面都可成為太陽能光伏發電利用的場所,還可利用我國廣闊的沙漠,通過在沙漠上建造太陽能光伏發電基地,直接降低沙漠地帶直射到地表的太陽輻射,有效降低地表溫度,減小蒸發量,進而使植物的存活和生長在相當程度上成為可能,穩固并減少沙丘,又向大自然索取了所需的清潔可再生能源。